Biokinetic and dosimetric modelling in the estimation of radiation risks from internal emitters.

نویسنده

  • John Harrison
چکیده

The International Commission on Radiological Protection (ICRP) has developed biokinetic and dosimetric models that enable the calculation of organ and tissue doses for a wide range of radionuclides. These are used to calculate equivalent and effective dose coefficients (dose in Sv Bq(-1) intake), considering occupational and environmental exposures. Dose coefficients have also been given for a range of radiopharmaceuticals used in diagnostic medicine. Using equivalent and effective dose, exposures from external sources and from different radionuclides can be summed for comparison with dose limits, constraints and reference levels that relate to risks from whole-body radiation exposure. Risk estimates are derived largely from follow-up studies of the survivors of the atomic bombings at Hiroshima and Nagasaki in 1945. New dose coefficients will be required following the publication in 2007 of new ICRP recommendations. ICRP biokinetic and dosimetric models are subject to continuing review and improvement, although it is arguable that the degree of sophistication of some of the most recent models is greater than required for the calculation of effective dose to a reference person for the purposes of regulatory control. However, the models are also used in the calculation of best estimates of doses and risks to individuals, in epidemiological studies and to determine probability of cancer causation. Models are then adjusted to best fit the characteristics of the individuals and population under consideration. For example, doses resulting from massive discharges of strontium-90 and other radionuclides to the Techa River from the Russian Mayak plutonium plant in the early years of its operation are being estimated using models adapted to take account of measurements on local residents and other population-specific data. Best estimates of doses to haemopoietic bone marrow, in utero and postnatally, are being used in epidemiological studies of radiation-induced leukaemia. Radon-222 is the one internal emitter for which control of exposure is based on direct information on cancer risks, with extensive information available on lung cancer induction by radon progeny in mines and consistent data on risks in homes. The dose per unit (222)Rn exposure can be calculated by comparing lung cancer risk estimates derived for (222)Rn exposure and for external exposure of the Japanese survivors. Remarkably similar values are obtained by this method and by calculations using the ICRP model of the respiratory tract, providing good support for model assumptions. Other informative comparisons with risks from external exposure can be made for Thorotrast-induced liver cancer and leukaemia, and radium-induced bone cancer. The bone-seeking alpha emitters, plutonium-239 and radium isotopes, are poorer leukaemogens than predicted by models. ICRP dose coefficients are published as single values without consideration of uncertainties. However, it is clear that full consideration of uncertainties is appropriate when considering best estimates of doses and risks to individuals or specific population groups. An understanding of the component uncertainties in the calculation of dose coefficients can be seen as an important goal and should help inform judgements on the control of exposures. The routine consideration of uncertainties in dose assessments, if achievable, would be of questionable value when doses are generally maintained at small fractions of limits.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biokinetic modelling of 89-Zr-labelled monoclonal antibodies for dosimetry assessment in humans

Background: Monoclonal antibodies have confirmed their merit as biotherapeutics across a wide spectrum of diseases, including cancer, heart disease, infection, and immune disorders. Materials and Methods: The dynamics of 89Zr-labelled monoclonal antibodies (MAb) after injection into the human body are modelled. This modified biokinetic model can be used for dose assessment not only for 89Zr-lab...

متن کامل

Radiation doses and risks from internal emitters.

This review updates material prepared for the UK Government Committee Examining Radiation Risks from Internal Emitters (CERRIE) and also refers to the new recommendations of the International Commission on Radiological Protection (ICRP) and other recent developments. Two conclusions from CERRIE were that ICRP should clarify and elaborate its advice on the use of its dose quantities, equivalent ...

متن کامل

Estimation of dosimetric parameters of I-125 brachytherapy source model 6711 using GATE8.1 code

Brachytherapy is one type of internal radiation therapy where radiation sources, which are usually encapsulated are placed as close as possible to the tumor site inside the patient's body. In this technique, it is important to determine dose distribution around the brachytherapy capsule. Hereby, in this paper, dosimetric parameters of I-125 brachytherapy source model 6711 are estimated accordin...

متن کامل

Quantification and modelling of the dosimetric impact of the treatment couch in volumetric modulated arc therapy (VMAT)

Background: As the volumetric modulated arc therapy (VMAT) becoming a main role of treatment ways, the effect of couch top becomes more significant. It is imperative to re-evaluate the couches that previously may have been considered of no importance during early treatment techniques. The impact of couch top on radiation delivery was explored and the couch model was tested with the aim of reduc...

متن کامل

Dosimetric Parameters Estimation of I-125 Brachytherapy Source in fat phantom using GATE8.0 code

Introduction: Brachytherapy is one type of internal radiation therapy where radiation sources, which are usually encapsulated, are placed as close as possible to the tumor site or inside the patient's body. In this technique, it is important to determine dose distribution around the brachytherapy capsule to create optimal treatment plant. In this way, dosimetric parameters are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of radiological protection : official journal of the Society for Radiological Protection

دوره 29 2A  شماره 

صفحات  -

تاریخ انتشار 2009